During the 1820s much of Faraday's work centered on chemistry. He aided Davy in his disastrous efforts to protect electrochemically the copper bottoms of ships and with the equally unsuccessful project to improve optical glass. In 1823 Faraday liquefied the gas chlorine for the first time and in the 1840s he liquefied several more gases. His liquefaction of chlorine resulted in a bitter break with Davy, by now president of the Royal Society , who believed that Faraday had not given him sufficient credit for his part in the work.
Following his 1831 electromagnetic work, Faraday turned his attention to electrochemistry. The decomposition of chemical compounds was a standard test for the presence of electricity. In his extensive use of this test, he observed phenomena contradicting Davy's theory that electrochemical decomposition occurred at the metal pole. Faraday found that decomposition occurred in the substance itself and the poles did not need to be metal. All this led Faraday to develop a new language of electrochemistry.
Faraday was thus able to enunciate his two laws of electrolysis. His second law implied that both matter and electricity were atomic in nature. Faraday was deeply opposed to atomism, especially the theory proposed by John Dalton, and indeed held a very antimaterialist view. It was clear to Faraday, however, that the law of definite proportions also required some sort of atomic theory . What Faraday proposed in the 1840s was that matter was perceived where lines of force met at a particular point in space. A direct experimental outcome of this radical theory was Faraday's discovery in 1845 of the magneto-optical effect and diamagnetism. The field theory that Faraday developed from this was able to solve a number of problems in physics that were not amenable to conventional approaches.